Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Transbound Emerg Dis ; 69(5): e1280-e1288, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1784743

ABSTRACT

The unusual genetic diversity of the Omicron strain has led to speculation about its origin. The mathematical modelling platform developed for the Stockholm Paradigm (SP) indicates strongly that it has retro-colonized humans from an unidentified nonhuman mammal, likely originally infected by humans. The relationship between Omicron and all other SARS-CoV-2 variants indicates oscillations among hosts, a core part of the SP. Such oscillations result from the emergence of novel variants following colonization of new hosts, replenishing and expanding the risk space for disease emergence. The SP predicts that pathogens colonize new hosts using pre-existing capacities. Those events are thus predictable to a certain extent. Novel variants emerge after a colonization and are not predictable. This makes it imperative to take proactive measures for anticipating emerging infectious diseases (EID) and mitigating their impact. The SP suggests a policy protocol, DAMA, to accomplish this goal. DAMA comprises: DOCUMENT to detect pathogens before they emerge in new places or colonize new hosts; ASSESS to determine risk; MONITOR to detect changes in pathogen populations that increase the risk of outbreaks and ACT to prevent outbreaks when possible and minimize their impact when they occur.


Subject(s)
COVID-19 , Communicable Diseases, Emerging , Animals , COVID-19/epidemiology , COVID-19/veterinary , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/veterinary , Host Specificity , Humans , Mammals , SARS-CoV-2/genetics
2.
PLoS Pathog ; 17(6): e1009583, 2021 06.
Article in English | MEDLINE | ID: covidwho-1256050

ABSTRACT

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic reveals a major gap in global biosecurity infrastructure: a lack of publicly available biological samples representative across space, time, and taxonomic diversity. The shortfall, in this case for vertebrates, prevents accurate and rapid identification and monitoring of emerging pathogens and their reservoir host(s) and precludes extended investigation of ecological, evolutionary, and environmental associations that lead to human infection or spillover. Natural history museum biorepositories form the backbone of a critically needed, decentralized, global network for zoonotic pathogen surveillance, yet this infrastructure remains marginally developed, underutilized, underfunded, and disconnected from public health initiatives. Proactive detection and mitigation for emerging infectious diseases (EIDs) requires expanded biodiversity infrastructure and training (particularly in biodiverse and lower income countries) and new communication pipelines that connect biorepositories and biomedical communities. To this end, we highlight a novel adaptation of Project ECHO's virtual community of practice model: Museums and Emerging Pathogens in the Americas (MEPA). MEPA is a virtual network aimed at fostering communication, coordination, and collaborative problem-solving among pathogen researchers, public health officials, and biorepositories in the Americas. MEPA now acts as a model of effective international, interdisciplinary collaboration that can and should be replicated in other biodiversity hotspots. We encourage deposition of wildlife specimens and associated data with public biorepositories, regardless of original collection purpose, and urge biorepositories to embrace new specimen sources, types, and uses to maximize strategic growth and utility for EID research. Taxonomically, geographically, and temporally deep biorepository archives serve as the foundation of a proactive and increasingly predictive approach to zoonotic spillover, risk assessment, and threat mitigation.


Subject(s)
Biological Specimen Banks/organization & administration , Communicable Disease Control , Communicable Diseases, Emerging/prevention & control , Community Networks/organization & administration , Public Health Surveillance/methods , Animals , Animals, Wild , Biodiversity , Biological Specimen Banks/standards , Biological Specimen Banks/supply & distribution , Biological Specimen Banks/trends , COVID-19/epidemiology , Communicable Disease Control/methods , Communicable Disease Control/organization & administration , Communicable Disease Control/standards , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/microbiology , Communicable Diseases, Emerging/virology , Community Networks/standards , Community Networks/supply & distribution , Community Networks/trends , Disaster Planning/methods , Disaster Planning/organization & administration , Disaster Planning/standards , Geography , Global Health/standards , Global Health/trends , Humans , Medical Countermeasures , Pandemics/prevention & control , Public Health , Risk Assessment , SARS-CoV-2/physiology , Zoonoses/epidemiology , Zoonoses/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL